|
Stars of different mass and age have varying internal structures. Stellar structure models describe the internal structure of a star in detail and make detailed predictions about the luminosity, the color and the future evolution of the star. ==Energy transport== Different layers of the stars transport heat up and outwards in different ways, primarily convection and radiative transfer, but thermal conduction is important in white dwarfs. Convection is the dominant mode of energy transport when the temperature gradient is steep enough so that a given parcel of gas within the star will continue to rise if it rises slightly via an adiabatic process. In this case, the rising parcel is buoyant and continues to rise if it is warmer than the surrounding gas; if the rising particle is cooler than the surrounding gas, it will fall back to its original height. In regions with a low temperature gradient and a low enough opacity to allow energy transport via radiation, radiation is the dominant mode of energy transport. The internal structure of a main sequence star depends upon the mass of the star. In solar mass stars (0.3–1.5 solar masses ()), including the Sun, hydrogen-to-helium fusion occurs primarily via proton-proton chains, which do not establish a steep temperature gradient. Thus, radiation dominates in the inner portion of solar mass stars. The outer portion of solar mass stars is cool enough that hydrogen is neutral and thus opaque to ultraviolet photons, so convection dominates. Therefore, solar mass stars have radiative cores with convective envelopes in the outer portion of the star. In massive stars (greater than about 1.5 ), the core temperature is above about 1.8×107 K, so hydrogen-to-helium fusion occurs primarily via the CNO cycle. In the CNO cycle, the energy generation rate scales as the temperature to the 17th power, whereas the rate scales as the temperature to the 4th power in the proton-proton chains. Due to the strong temperature sensitivity of the CNO cycle, the temperature gradient in the inner portion of the star is steep enough to make the core convective. In the outer portion of the star, the temperature gradient is shallower but the temperature is high enough that the hydrogen is nearly fully ionized, so the star remains transparent to ultraviolet radiation. Thus, massive stars have a radiative envelope. The lowest mass main sequence stars have no radiation zone; the dominant energy transport mechanism throughout the star is convection. Giants are also fully convective. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Stellar structure」の詳細全文を読む スポンサード リンク
|